Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arthropod Struct Dev ; 72: 101229, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36652838

RESUMEN

Many long-legged Medetera flies are natural enemies of bark beetle pests, which they detect using olfactory cues, likely through olfactory sensilla on the antennae and maxillary palps. Morphological characterisation of olfactory sensilla among insects can provide a basis for future taxonomic, phylogenetic or electrophysiological studies. Scanning electron microscopy was used to describe the morphology of olfactory organs and sensillar equipment of Medetera signaticornis and M. infumata. Three different olfactory sensillum types were found in both fly species, sensilla trichodea, s. basiconica and grooved pegs. Based on size and wall structure, s. trichodea and s. basiconica were categorised into different subtypes. Sharp-tipped curved s. trichodea, and small, large and thin s. basiconica were found on the antennal postpedicel of M. signaticornis adults, while grooved s. basiconica were found in M. infumata. The density of sharp-tipped long s. trichodea was significantly higher in males compared to females, and in M. signaticornis compared to M. infumata. Long-grooved s. basiconica were found grouped in a small pit on the maxillary palps of both species. Comparison of our results with the limited available ecological data suggests that differences in numbers of specific sensillum types may reflect adaptations related to olfactory-driven behaviours such as host seeking.


Asunto(s)
Escarabajos , Dípteros , Femenino , Masculino , Animales , Filogenia , Corteza de la Planta , Microscopía Electrónica de Rastreo , Sensilos , Antenas de Artrópodos
2.
J Chem Ecol ; 49(7-8): 451-464, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36717509

RESUMEN

Predatory long-legged flies of the genus Medetera are important, but currently understudied, natural enemies of Scolytinae bark beetles such as Ips typographus. Medetera flies lay eggs on beetle-infested trees, where the developing larvae find their prey, but the chemical cues used by Medetera to locate infested trees are currently unknown. To identify odors attracting Medetera signaticornis, a species in Europe, headspace samples were collected at several time-points through different stages of I. typographus attacks on logs of Norway spruce (Picea abies). The headspace samples were analyzed using combined gas chromatography and mass spectrometry (GC-MS), and gas chromatography coupled with electroantennographic detection (GC-EAD) to determine compounds that stimulate M. signaticornis antennae. Antennae of M. signaticornis males and females were found to detect (-)-cis-verbenol, ( +)-trans-verbenol and myrtenol, which are known to be produced by bark beetles. Antennal responses were also observed for verbenene, isoterpinolene, α-pinene oxide, camphor, pinocamphone, terpinene-4-ol, myrtenal, borneol, α-terpineol, geranyl acetone, and verbenone, which are primarily produced by microorganisms, and α-pinene, α-fenchene, ß-pinene, camphene, 3-carene, limonene, γ-terpinene, and terpinolene, known spruce tree compounds. In field experiments testing two synthetic blends containing 18 antennal active and two additional compounds 2-methyl-3-buten-2-ol and ipsdienol we observed significant attraction of M. signaticornis within 24 h. These attractive blends can form the basis for development of Medetera monitoring lures for use in future forest and pest management.


Asunto(s)
Escarabajos , Dípteros , Picea , Gorgojos , Masculino , Animales , Femenino , Picea/química , Odorantes , Cromatografía de Gases y Espectrometría de Masas , Escarabajos/fisiología , Árboles
3.
Malar J ; 21(1): 180, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690854

RESUMEN

BACKGROUND: Nutrient acquisition and allocation integrate foraging and life-history traits in insects. To compensate for the lack of a particular nutrient at different life stages, insects may acquire these through supplementary feeding, for example, on vertebrate secretions, in a process known as puddling. The mosquito Anopheles arabiensis emerges undernourished, and as such, requires nutrients for both metabolism and reproduction. The purpose of this study was to assess whether An. arabiensis engage in puddling on cattle urine to obtain nutrients to improve life history traits. METHODS: To determine whether An. arabiensis are attracted to the odour of fresh, 24 h, 72 h and 168 h aged cattle urine, host-seeking and blood-fed (48 h post-blood meal) females were assayed in a Y-tube olfactometer, and gravid females assessed in an oviposition assay. Combined chemical and electrophysiological analyses were subsequently used to identify the bioactive compounds in all four age classes of cattle urine. Synthetic blends of bioactive compounds were evaluated in both Y-tube and field assays. To investigate the cattle urine, and its main nitrogenous compound, urea, as a potential supplementary diet for malaria vectors, feeding parameters and life history traits were measured. The proportion of female mosquitoes and the amount of cattle urine and urea imbibed, were assessed. Following feeding, females were evaluated for survival, tethered flight and reproduction. RESULTS: Host-seeking and blood-fed An. arabiensis were attracted to the natural and synthetic odour of fresh and aged cattle urine in both laboratory and field studies. Gravid females were indifferent in their response to cattle urine presence at oviposition sites. Host-seeking and blood-fed females actively imbibed cattle urine and urea, and allocated these resources according to life history trade-offs to flight, survival or reproduction, as a function of physiological state. CONCLUSIONS: Anopheles arabiensis acquire and allocate cattle urine to improve life history traits. Supplementary feeding on cattle urine affects vectorial capacity directly by increasing daily survival and vector density, as well as indirectly by altering flight activity, and thus should be considered in future models.


Asunto(s)
Anopheles , Rasgos de la Historia de Vida , Malaria , Animales , Anopheles/fisiología , Bovinos , Conducta Alimentaria , Femenino , Mosquitos Vectores/fisiología , Urea
4.
Pest Manag Sci ; 78(4): 1677-1685, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34994055

RESUMEN

BACKGROUND: Arvicolinae rodents are known pests causing damage to both agricultural and forest crops. Today, rodenticides for rodent control are widely discouraged owing to their negative effects on the environment. Rodents are the main prey for several predators, and their complex olfactory system allows them to identify risks of predation. Therefore, the potential use of predators' scents as repellents has gained interest as an ecologically based rodent control method. In a two-choice experiment, we investigated the potential repellent effects of five synthetic predator compounds: 2-phenylethylamine (2-PEA), 2-propylthietane (2-PT), indole, heptanal and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), at 1% and 5% doses, using the bank vole (Myodes glareolus) as a rodent model. RESULTS: The compound 2-PEA reduced both the food contacts and the time spent by voles in the treatment arm compared to the control arm. Likewise, 2-PT-treated arms reduced the food contacts, and the voles spent less time there, although this latter difference was not significant. Indole also showed a tendency to reduce the time spent at the treatment arm; however, this result was not significant. Unexpectedly, TMT had the reverse effect in showing attractive properties, possibly due to odor cues from differently sized predators and intraguild predation in nature. We found no dose-related effects for any compounds tested. CONCLUSION: Our results suggest that the 2-PEA and 2-PT are both effective odor stimuli for triggering reduced food contacts and area avoidance, and they may be good repellent candidates. We suggest further testing of 2-PEA and 2-PT in field experiments to further determine their dose-efficiency as repellents against rodents in more natural environments. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Arvicolinae , Roedores , Animales , Miedo , Feromonas , Conducta Predatoria
5.
Malar J ; 19(1): 327, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887614

RESUMEN

BACKGROUND: Plasmodium parasites manipulate the interaction between their mosquito and human hosts. Patients infected with gametocytes attract anopheline mosquitoes differentially compared to healthy individuals, an effect associated with an increased release of attractive volatile cues. This odour-driven manipulation is partly mediated by the gametocyte-specific metabolite, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which induces increased release of select aldehydes and terpenes from red blood cells and results in the enhanced attraction of host-seeking mosquitoes, which are vectors of malaria. This study investigates the effect of the HMBPP-induced volatiles on the attraction of wild Anopheles mosquitoes to humans under field conditions. METHODS: The efficacy of the HMBPP-induced odour blend to attract Anopheles was evaluated in a 4 × 6 Latin rectangular study design indoors using baited Suna traps. Furthermore, to assess the efficacy of the HMBPP-induced odour blend in (1) augmenting the attractiveness of human odour, and (2) attracting Anopheles mosquitoes in the absence of human odour, a two-choice assay using host decoy traps (HDTs) was used and evaluated using binomial generalized regression. RESULTS: Traps baited with the HMBPP-induced odour blend attracted and caught both Anopheles arabiensis and Anopheles pharoensis females in a dose-dependent manner in the presence of background human odour, up to 2.5 times that of an unbaited trap. Given a choice between human odour and human odour laden with the HMBPP-induced odour blend, mosquitoes differentially preferred traps augmented with the HMBPP-induced odour blend, which caught twice as many female An. arabiensis. Traps baited with the HMBPP-induced odour blend but lacking the background of human odour were not effective in attracting and catching mosquitoes. CONCLUSION: The findings of the present study revealed that the HMBPP-induced odour blend, when augmented with human body odour, is attractive to anopheline mosquitoes and could be used as a complementary vector control tool along with existing strategies.


Asunto(s)
Anopheles/fisiología , Quimiotaxis , Difosfatos/análisis , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Odorantes/análisis , Plasmodium falciparum/metabolismo , Animales , Femenino , Humanos , Malaria/parasitología , Compuestos Orgánicos Volátiles/análisis
6.
J Insect Physiol ; 119: 103948, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31539550

RESUMEN

Protapion trifolii and P. fulvipes (Coleoptera: Brentidae) are major pests in European clover seed production. Previous studies have reported a high host plant fidelity of these weevils for red and white clover species, respectively, driven by host plant olfactory cues. Given the specific host preferences observed in these weevils, we aimed to elucidate to which extent such selectivity is reflected in their peripheral olfactory systems. Using an electrophysiological approach, we performed the first functional characterisation of olfactory sensory neurons (OSNs) in P. trifolii to a panel of volatile compounds emitted by red clover plants, and compared the results with the reported OSN types of P. fulvipes. Nineteen OSN classes were characterized in P. trifolii, with the majority of these neurons responding strongly to common volatiles released by the host plant. Based on response profiles, eight of these OSN classes have clear matches to OSN classes in P. fulvipes. The OSN colocalisation patterns and antennal frequency of these classes are similar in the two species. Additionally, the responses of these OSNs are generally highly conserved in the two species, with clear response shifts only revealed for two of the OSN classes. These response shifts in combination with additional response dissimilarities for compounds that vary in abundance between red and white clover plants may underlie the species-specific host preferences. Further behavioural and field experiments should focus on these differentially detected compounds to elucidate their potential role in host selection and use in semiochemical-based control of these pests.


Asunto(s)
Escarabajos/fisiología , Neuronas Receptoras Olfatorias , Animales , Escarabajos/clasificación , Fenómenos Electrofisiológicos , Femenino , Herbivoria , Masculino , Sensilos/efectos de los fármacos , Sensilos/ultraestructura , Olfato/fisiología , Especificidad de la Especie , Trifolium/química , Compuestos Orgánicos Volátiles/farmacología
7.
J Chem Ecol ; 45(5-6): 474-489, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31053976

RESUMEN

Bark beetles kill apparently vigorous conifers during epidemics by means of pheromone-mediated aggregation. During non-endemic conditions the beetles are limited to use trees with poor defense, like wind-thrown. To find olfactory cues that help beetles to distinguish between trees with strong or weak defense, we collected volatiles from the bark surface of healthy felled or standing Picea abies trees. Furthermore, living trees were treated with methyl jasmonate in order to induce defense responses. Volatiles were analyzed by combined gas chromatography and electroantennographic detection (GC-EAD) on Ips typographus antennae. Compounds eliciting antennal responses were characterized by single sensillum recording for identification of specific olfactory sensory neurons (OSN). Release of monoterpene hydrocarbons decreased, while oxygenated compounds increased, from spring to early summer in felled trees. In both beetle sexes particular strong EAD activity was elicited by trace amounts of terpene alcohols and ketones. 4-Thujanol gave a very strong response and the absolute configuration of the tested natural product was assigned to be (+)-trans-(1R,4S,5S)-thujanol by stereoselective synthesis and enantioselective gas chromatography. One type of OSN responded to all ketones and five other OSN were characterized by the type of compounds that elicited responses. Three new OSN classes were found. Of the eight EAD-active compounds found in methyl jasmonate-treated bark, the known anti-attractant 1,8-cineole was the one most strongly induced. Our data support the hypothesis that highly active oxygenated host volatiles could serve as positive or negative cues for host selection in I. typographus and in other bark beetles.


Asunto(s)
Escarabajos/fisiología , Monoterpenos/química , Estireno/química , Acetatos/farmacología , Animales , Monoterpenos Bicíclicos , Ciclopentanos/farmacología , Fenómenos Electrofisiológicos/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos/síntesis química , Monoterpenos/farmacología , Oxilipinas/farmacología , Picea/química , Picea/metabolismo , Corteza de la Planta/química , Corteza de la Planta/efectos de los fármacos , Corteza de la Planta/metabolismo , Estereoisomerismo , Estireno/farmacología
8.
Front Physiol ; 9: 323, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29666586

RESUMEN

Insects use sensitive olfactory systems to detect relevant host volatiles and avoid unsuitable hosts in a complex environmental odor landscape. Insects with short lifespans, such as gall midges (Diptera: Cecidomyiidae), are under strong selection pressure to detect and locate suitable hosts for their offspring in a short period of time. Ephemeral gall midges constitute excellent models for investigating the role of olfaction in host choice, host shift, and speciation. Midges mate near their site of emergence and females migrate in order to locate hosts for oviposition, thus females are expected to be more responsive to olfactory cues emitted by the host compared to males. In this study, we explored the correlation between host choice and the function of the peripheral olfactory system in 12 species of gall midges, including species with close phylogenetic relationships that use widely different host plants and more distantly related gall midge species that use similar hosts. We tested the antennal responses of males and females of the 12 species to a blend of 45 known insect attractants using coupled gas chromatographic-electroantennographic detection. When the species-specific response profiles of the gall midges were compared to a newly generated molecular-based phylogeny, we found they responded to the compounds in a sex- and species-specific manner. We found the physiological response profiles of species that use annual host plants, and thus have to locate their host every season, are similar for species with similar hosts despite large phylogenetic distances. In addition, we found closely related species with perennial hosts demonstrated odor response profiles that were consistent with their phylogenetic history. The ecology of the gall midges affects the tuning of the peripheral olfactory system, which in turn demonstrates a correlation between olfaction and speciation in the context of host use.

9.
Malar J ; 17(1): 90, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29466989

RESUMEN

BACKGROUND: Anopheles arabiensis is a key vector for the transmission of human malaria in sub-Saharan Africa. Over the past 10,000 years, humans have successfully cultivated grasses and altered the landscape, creating An. arabiensis favourable environments that contain excellent habitats for both larvae and adults. Sugarcane is the most expanding agricultural system in sub-Saharan Africa, and is linked to the increased threat of malaria in rural communities. The prolific production and wind dispersal of sugarcane pollen, together with standing pools of water, often provide, as a result of irrigation, a nutrient-rich environment for the offspring of gravid malaria mosquitoes. RESULTS: In the present study, sugarcane pollen-associated volatiles from two cultivars are shown to attract gravid An. arabiensis in a still air two-port olfactometer and stimulate egg laying in an oviposition bioassay. Through combined gas chromatography and electroantennographic detection, as well as combined gas chromatography and mass spectrometric analyses, we identified the bioactive volatiles and generated a synthetic blend that reproduced the full behavioural repertoire of gravid mosquitoes in the Y-tube assay. Two subtractive odour blends, when compared with the full blend, were significantly more attractive. These three and four-component subtractive blends share the compounds (1R)-(+)-α-pinene, nonanal and benzaldehyde, of which, (1R)-(+)-α-pinene and nonanal are found in the attractive odour blends from rice plants and maize pollen. In pairwise comparisons, the rice synthetic odour blend was more attractive to gravid mosquitoes than either of the pollen blends, whereas the pollen blends did not differ in attraction. CONCLUSIONS: The attraction of gravid females to sugarcane pollen volatiles demonstrated in this study, together with the previously found grass-associated volatiles, raise the potential of developing a bioactive chimeric blend to attract gravid malaria mosquitoes. This is discussed in relation to the development of novel and cost-effective vector control measures.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/fisiología , Conducta Alimentaria , Feromonas/farmacología , Polen/química , Saccharum/química , Compuestos Orgánicos Volátiles/farmacología , Animales , Fenómenos Electrofisiológicos , Femenino , Cromatografía de Gases y Espectrometría de Masas , Oviposición
10.
BMC Biol ; 15(1): 88, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28962619

RESUMEN

BACKGROUND: Mate finding and recognition in animals evolves during niche adaptation and involves social signals and habitat cues. Drosophila melanogaster and related species are known to be attracted to fermenting fruit for feeding and egg-laying, which poses the question of whether species-specific fly odours contribute to long-range premating communication. RESULTS: We have discovered an olfactory channel in D. melanogaster with a dual affinity to sex and food odorants. Female flies release a pheromone, (Z)-4-undecenal (Z4-11Al), that elicits flight attraction in both sexes. Its biosynthetic precursor is the cuticular hydrocarbon (Z,Z)-7,11-heptacosadiene (7,11-HD), which is known to afford reproductive isolation between the sibling species D. melanogaster and D. simulans during courtship. Twin olfactory receptors, Or69aB and Or69aA, are tuned to Z4-11Al and food odorants, respectively. They are co-expressed in the same olfactory sensory neurons, and feed into a neural circuit mediating species-specific, long-range communication; however, the close relative D. simulans, which shares food resources with D. melanogaster, does not respond to Z4-11Al. CONCLUSION: The Or69aA and Or69aB isoforms have adopted dual olfactory traits. The underlying gene yields a collaboration between natural and sexual selection, which has the potential to drive speciation.


Asunto(s)
Comunicación Animal , Quimiotaxis , Drosophila melanogaster/fisiología , Neuronas Receptoras Olfatorias/fisiología , Feromonas/fisiología , Receptores Odorantes/fisiología , Alcadienos/metabolismo , Animales , Femenino , Atractivos Sexuales/fisiología , Especificidad de la Especie
11.
Chemoecology ; 27(5): 187-198, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28943720

RESUMEN

Insects locate their host plants using mainly visual and olfactory cues, generally of the exploited plant structure. However, when the resource is difficult to access, it could be beneficial to utilise indirect cues, which indicates the presence of reward (e.g., oviposition site or mate). In the present study, we investigated the host-plant location strategy of the monophagous Guatemalan potato moth Tecia solanivora (Lepidoptera: Gelechiidae). The larva of the moth feed exclusively on potato Solanum spp. (Solanaceae) tubers usually hidden below ground. Using electrophysiological and behavioural tests, we characterised the olfactory cues mediating the attraction of the moth towards their host plant. Odour blends were made to represent different potato structures: tubers, foliage, and flowers. Synthetic blends were created by combining potato-emitted compounds that were antennal active which showed positive dose-response. Attraction to these blends of compounds in relation to the mating status of males and females was tested in dual-choice Y-tube assays. Both males and females, virgin and mated, were attracted to a three-compound blend representing flower odour, while foliage and tuber blends attracted neither sexes. Oviposition bioassays indicated additionally that the floral blend enhances oviposition. We show that potato flower odour might indicate the presence of an oviposition site for the female and possibly an increased mating opportunity for both sexes. Our results provide one of the few examples of the use of floral odour as a reliable indicator of host and probably mating possibility for phytophagous insects exploiting a site spatially separated from the flower.

12.
J Chem Ecol ; 43(8): 794-805, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28812177

RESUMEN

Polyphagous herbivorous insects need to discriminate suitable from unsuitable host plants in complex plant communities. While studies on the olfactory system of monophagous herbivores have revealed close adaptations to their host plant's characteristic volatiles, such adaptive fine-tuning is not possible when a large diversity of plants is suitable. Instead, the available literature on polyphagous herbivore preferences suggests a higher level of plasticity, and a bias towards previously experienced plant species. It is therefore necessary to take into account the diversity of plant odors that polyphagous herbivores encounter in the wild in order to unravel the olfactory basis of their host plant choice behaviour. In this study we show that a polyphagous moth, Spodoptera littoralis, has the sensory ability to distinguish five host plant species using olfaction alone, this being a prerequisite to the ability to make a choice. We have used gas chromatography mass spectrometry (GC-MS) and gas chromatography electroantennographic detection (GC-EAD) in order to describe host plant odor profiles as perceived by S. littoralis. We find that each plant emits specific combinations and proportions of GC-EAD active volatiles, leading to statistically distinct profiles. In addition, at least four of these plants show GC-EAD active compound proportions that are conserved across individual plants, a characteristic that enables insects to act upon previous olfactory experiences during host plant choice. By identifying the volatiles involved in olfactory differentiation of alternative host plants by Spodoptera littoralis, we set the groundwork for deeper investigations of how olfactory perceptions translate into behaviour in polyphagous herbivores.


Asunto(s)
Mariposas Nocturnas/fisiología , Odorantes/análisis , Plantas/química , Animales , Conducta Animal/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Herbivoria , Plantas/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología
13.
Science ; 355(6329): 1076-1080, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28183997

RESUMEN

Malaria infection renders humans more attractive to Anopheles gambiae sensu lato mosquitoes than uninfected people. The mechanisms remain unknown. We found that an isoprenoid precursor produced by Plasmodium falciparum, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), affects A. gambiae s.l. blood meal seeking and feeding behaviors as well as susceptibility to infection. HMBPP acts indirectly by triggering human red blood cells to increase the release of CO2, aldehydes, and monoterpenes, which together enhance vector attraction and stimulate vector feeding. When offered in a blood meal, HMBPP modulates neural, antimalarial, and oogenic gene transcription without affecting mosquito survival or fecundity; in a P. falciparum-infected blood meal, sporogony is increased.


Asunto(s)
Anopheles/fisiología , Conducta Alimentaria/fisiología , Malaria Falciparum/sangre , Mosquitos Vectores/fisiología , Organofosfatos/metabolismo , Plasmodium falciparum/metabolismo , Animales , Anopheles/efectos de los fármacos , Anopheles/genética , Dióxido de Carbono/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/parasitología , Femenino , Regulación de la Expresión Génica , Humanos , Malaria Falciparum/parasitología , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Oogénesis , Organofosfatos/farmacología , Terpenos/metabolismo , Transcripción Genética , Volatilización
14.
Malar J ; 16(1): 39, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28114992

RESUMEN

BACKGROUND: Maize cultivation contributes to the prevalence of malaria mosquitoes and exacerbates malaria transmission in sub-Saharan Africa. The pollen from maize serves as an important larval food source for Anopheles mosquitoes, and females that are able to detect breeding sites where maize pollen is abundant may provide their offspring with selective advantages. Anopheles mosquitoes are hypothesized to locate, discriminate among, and select such sites using olfactory cues, and that synthetic volatile blends can mimic these olfactory-guided behaviours. METHODS: Two-port olfactometer and two-choice oviposition assays were used to assess the attraction and oviposition preference of gravid Anopheles arabiensis to the headspace of the pollen from two maize cultivars (BH-660 and ZM-521). Bioactive compounds were identified using combined gas chromatography and electroantennographic detection from the headspace of the cultivar found to be most attractive (BH-660). Synthetic blends of the volatile compounds were then assessed for attraction and oviposition preference of gravid An. arabiensis, as above. RESULTS: Here the collected headspace volatiles from the pollen of two maize cultivars was shown to differentially attract and stimulate oviposition in gravid An. arabiensis. Furthermore, a five-component synthetic maize pollen odour blend was identified, which elicited the full oviposition behavioural repertoire of the gravid mosquitoes. CONCLUSIONS: The cues identified from maize pollen provide important substrates for the development of novel control measures that modulate gravid female behaviour. Such measures are irrespective of indoor or outdoor feeding and resting patterns, thus providing a much-needed addition to the arsenal of tools that currently target indoor biting mosquitoes.


Asunto(s)
Anopheles/fisiología , Quimiotaxis , Mosquitos Vectores/fisiología , Odorantes/análisis , Oviposición , Zea mays , Animales , Femenino , Polen/fisiología , Zea mays/metabolismo
15.
Bioprocess Biosyst Eng ; 40(4): 625-631, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28025700

RESUMEN

The effluent from the biogas process was tested as a nutrient source during cultivation of the protein-rich and edible microalgae Spirulina (Arthrospira platensis) and compared with conventional Spirulina medium. Equal biomass production was observed until late exponential phase and no significant differences could be observed between the treatments in protein amount, amino acid composition, and total lipid concentration. The concentration of the pigment phycocyanin differed significantly between Spirulina medium and the effluent-based medium (63.3 ± 11.7 and 86.2 ± 1.9 mg g-1, respectively). Slightly higher concentrations of saturated fatty acids, mainly palmitic acid, were observed in the biomass produced in Spirulina medium than in that produced in the effluent-based medium. In the biomass produced in the effluent-based medium, the cadmium concentration was 0.07 ± 0.05 mg kg-1 of dry weight, whereas it was below the detection limit in the biomass produced in Spirulina medium. There is a need to identify new food and feed resources and a possible future scenario is to integrate Spirulina production into the biogas plant for protein production as it contains more than 60% of protein on dry weight basis. In that scenario, it is important to control heavy metal concentrations in the biogas slurry fed to Spirulina.


Asunto(s)
Biocombustibles , Medios de Cultivo/química , Microalgas/crecimiento & desarrollo , Spirulina/crecimiento & desarrollo
16.
R Soc Open Sci ; 3(11): 160467, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28018630

RESUMEN

Natural selection favours a restricted host breadth in disease vector mosquitoes, indicating that there is an adaptive value associated with maintaining plasticity in host preference. One mechanism to maintain such plasticity is via the detection of generic cues by conserved peripheral olfactory pathways, which when perceived in different host odour contexts enable the identification of and discrimination among potential host species. Here, we show that the context of an odour cue shapes host perception in mosquitoes, by altering the release rate of the generic host-related volatile (R)-1-octen-3-ol, within its natural range, and in the background odour of known hosts and non-hosts. This result highlights that host recognition is contextual and dependent on quantitative and qualitative differences in odour blends and the olfactory codes evoked. From the perspective of vector management, understanding the perception of odour blends and their context is essential to the process of developing synthetic blends for the optimal attraction of mosquitoes in efforts to control and monitor populations.

17.
Sci Rep ; 6: 37930, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27901056

RESUMEN

Mosquito oviposition site selection is essential for vector population dynamics and malaria epidemiology. Irrigated rice cultivations provide ideal larval habitats for malaria mosquitoes, which has resulted in increased prevalence of the malaria vector, Anopheles arabiensis, in sub-Saharan Africa. The nature and origin of the cues regulating this behaviour are only now being elucidated. We show that gravid Anopheles arabiensis are attracted and oviposit in response to the odour present in the air surrounding rice. Furthermore, we identify a synthetic rice odour blend, using electrophysiological and chemical analyses, which elicits attraction and oviposition in laboratory assays, as well as attraction of free-flying gravid mosquitoes under semi-field conditions. This research highlights the intimate link between malaria vectors and agriculture. The identified volatile cues provide important substrates for the development of novel and cost-effective control measures that target female malaria mosquitoes, irrespective of indoor or outdoor feeding and resting patterns.


Asunto(s)
Anopheles/fisiología , Mosquitos Vectores/fisiología , Oryza/metabolismo , Oviposición/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Animales , Anopheles/parasitología , Femenino , Malaria/epidemiología , Malaria/transmisión , Mosquitos Vectores/parasitología
18.
Malar J ; 15(1): 354, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27439360

RESUMEN

BACKGROUND: Anopheles arabiensis is a dominant vector of malaria in sub-Saharan Africa, which feeds indoors and outdoors on human and other vertebrate hosts, making it a difficult species to control with existing control methods. Novel methods that reduce human-vector interactions are, therefore, required to improve the impact of vector control programmes. Investigating the mechanisms underlying the host discrimination process in An. arabiensis could provide valuable knowledge leading to the development of novel control technologies. In this study, a host census and blood meal analysis were conducted to determine the host selection behaviour of An. arabiensis. Since mosquitoes select and discriminate among hosts primarily using olfaction, the volatile headspace of the preferred non-human host and non-host species, were collected. Using combined gas chromatography and electroantennographic detection analysis followed by combined gas chromatography and mass spectrometry, the bioactive compounds in the headspace collections were identified. The efficiency of the identified non-host compounds to repel host-seeking malaria mosquitoes was tested under field conditions. RESULTS: The host census and blood meal analyses demonstrated that An. arabiensis strongly prefers human blood when host seeking indoors, while it randomly feeds on cattle, goats and sheep when found outdoors. However, An. arabiensis avoids chickens despite their relatively high abundance, indicating that chickens are a non-host species for this vector. Eleven bioactive compounds were found in the headspace of the non-host species. Six of these were species-specific, out of which four were identified using combined gas chromatography and mass spectrometry. When tested in the field, the chicken-specific compounds, isobutyl butyrate, naphthalene, hexadecane and trans-limonene oxide, and the generic host compounds, limonene, cis-limonene oxide and ß-myrcene, significantly reduced trap catches within the house compared to a negative control. A significant reduction in trap catch was also observed when suspending a caged chicken next to the trap. CONCLUSIONS: Non-host volatiles repel host-seeking An. arabiensis and thus play a significant role in host discrimination. As such, this study demonstrates that non-host volatiles can provide protection to humans at risk of mosquito-vectored diseases in combination with established control programmes.


Asunto(s)
Pollos , Culicidae/efectos de los fármacos , Repelentes de Insectos/farmacología , Insectos Vectores/efectos de los fármacos , Compuestos Orgánicos Volátiles/farmacología , Animales , Culicidae/fisiología , Conducta Alimentaria/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Repelentes de Insectos/aislamiento & purificación , Insectos Vectores/fisiología , Compuestos Orgánicos Volátiles/aislamiento & purificación
19.
Bioresour Technol ; 207: 19-23, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26868151

RESUMEN

Nutrient removal from the effluent of an anaerobic moving bed biofilm reactor (AnMBBR) treated with microalgae was evaluated. Algal treatment was highly efficient in removal of nutrients and discharge limits were met after 3days. Extending the cultivation time from 3 to 5days resulted in a large increase in biomass, from 233.3±49.3 to 530.0±72.1mgL(-1), despite nutrients in the water being exhausted after 3days (ammonium 0.04mgL(-1), orthophosphate <0.05mgL(-1)). Biomass productivity, lipid content and quality did not differ in microalgal biomass produced in wastewater sampled before the AnMBBR. The longer cultivation time resulted in a slight increase in total lipid concentration and a significant decrease in linolenic acid concentration in all treatments. Differences were observed in chemical oxygen demand, which decreased after algal treatment in wastewater sampled before the AnMBBR whereas it increased after algal treatment in the effluent from the AnMBBR.


Asunto(s)
Biopelículas , Reactores Biológicos/microbiología , Ciudades , Microalgas/crecimiento & desarrollo , Aguas Residuales/microbiología , Purificación del Agua/métodos , Biodegradación Ambiental , Biomasa , Ésteres/análisis , Lípidos , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación
20.
J Chem Ecol ; 42(1): 24-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26687092

RESUMEN

Identification of host-derived volatiles is an important step towards the development of novel surveillance and control tools for Culicoides biting midges. In this study, we identified compounds from headspace collections of cattle hair and urine that modulate the behavioral response of Culicoides nubeculosus, a research model species with a similar host-range as the vectors of Bluetongue disease and Schmallenberg disease in Europe. Combined gas chromatography and electroantennographic detection (GC-EAD) analysis revealed 23 bioactive compounds, of which 17, together with octanal, were evaluated in a two-choice behavioral assay in the presence of CO2. Decanal, 2-phenylethanal, 1-octen-3-ol, 2-ethylhexanol, 3-methylindole, phenol, and 3-ethylphenol elicited attraction of host seeking C. nubeculosus, whereas heptanal, octanal, nonanal, 3-propylphenol, and 4-propylphenol inhibited the insects' attraction to CO2, when compared to CO2 alone. 6-Methyl-5-hepten-2-one, 3-methylphenol, 4-methylphenol, and 4-ethylphenol elicited both attraction and inhibition. The behavioral responses were dependent on the concentration tested. Our results show that cattle-derived odors have the potential to be used for the manipulation of the behavior of Culicoides biting midges.


Asunto(s)
Conducta Animal/efectos de los fármacos , Bovinos , Ceratopogonidae/efectos de los fármacos , Cabello/química , Compuestos Orgánicos Volátiles/farmacología , Animales , Dióxido de Carbono/farmacología , Ceratopogonidae/fisiología , Ceratopogonidae/virología , Cromatografía de Gases y Espectrometría de Masas , Olfatometría , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...